Quasi-monotone mappings on θn-continua

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Monotone Ćirić Quasi–contraction Mappings

We prove the existence of fixed points of monotone quasi-contraction mappings in metric and modular metric spaces. This is the extension of Ran and Reurings fixed point theorem for monotone contraction mappings in partially ordered metric spaces to the case of quasicontraction mappings introduced by Ćirić. The proofs are based on Lemmas ?? and ??, which contain two crucial inequalities essentia...

متن کامل

Mappings of Terminal Continua

Various kinds of nonseparating subcontinua were studied by a number of authors, see, for example, the expository paper [2], where a large amount of information on this subject is given. In the topological literature, or in continuum theory (to be more precise), the term “terminal,” when applied either to subcontinua of a given continuum or to points, and the same name “terminal” was assigned to...

متن کامل

On the Monotone Mappings in CAT(0) Spaces

In this paper, we first introduce a monotone mapping and its resolvent in general metric spaces.Then, we give two new iterative methods  by combining the resolvent method with Halpern's iterative method and viscosity approximation method for  finding a fixed point of monotone mappings and a solution of variational inequalities. We prove convergence theorems of the proposed iterations  in ...

متن کامل

Non-metric continua and multi-valued mappings

A continuum is an arboroid if it is hereditarily unicoherent and arcwise connected. A metric arboroid is a dendroid. A generalized dendrite is a locally connected arboroid. Among other things, we shall prove that a locally connected continuum X is a generalized dendrite if and only if X has the fixed point property for continuous, closed set-valued mappings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1984

ISSN: 0166-8641

DOI: 10.1016/0166-8641(84)90022-1